

Wellington Primary School

Calculation Policy
Yr1-6

This document is broken down into addition and subtraction, multiplication and division.

At the start of each operation there is a break down of models and images that are used to support concepts taught.

Each operation is broken down into skills and each key skill has an area showing different models, images and resources used to teach these concepts effectively.

There is an overview of skills are linked to year groups to support consistency through out school. There is a glossary of terms at the end of each section to support understanding of key language used to teach the four operations.

Addilition

Bar Madel

Models

Discrete

$7-3=4$

Continuous

$7-3=4$
$2,394-1,014=1,380$

Models

 W

Cubes

$7=4+3$

-00-00000000--000-9000000-

$7-3=4$
-000 00000000000000000-

$4+3=7 \quad 4$ is a part.
$3+4=7 \quad 3$ is a part.
$7-3=4$
$7-4=3$

First
Then

$\bigcirc \bigcirc$

$$
4+3=7
$$

Then

Now

$$
10-4=6
$$

1	2	3	4	5	6	7	8	9	(10)

Straws

$$
42-17=25
$$

$$
8+7=15
$$

nnnmen

$$
\begin{array}{|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & \text { (8) } & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline
\end{array}
$$

Number Linas (Blank)

$35+37=72$

$35+37=72$

$72-35=37$

ndtas	Tens	Ones	34-275
	III		
R	, IIIIK		26
	栍		

PV Counters (subtraction)

Hundeds	Tens	Ones	
$\varnothing 000 \varnothing$	-000\%		$\begin{aligned} & 6,52 \\ & .207 \end{aligned}$
			445

1
3.65
+2.41
6.06

Thousans	Hundeds	Tens	Ones	
		8080	$800 \varnothing$	$\begin{array}{r} 34357 \\ -\quad 2735 \end{array}$
				1622

Skill	Year	Representations and models	
Add two 1-digit numbers to 10	1	Part-whole model Bar model Number shapes	Ten frames (within 10) Bead strings (10) Number tracks
Add 1 and 2-digit numbers to 20	1	Part-whole model Bar model Number shapes Ten frames (within 20)	Bead strings (20) Number tracks Number lines (labelled) Straws
Add three 1-digit numbers	2	Part-whole model Bar model	Ten frames (within 20) Number shapes
Add 1 and 2-digit numbers to 100	2	Part-whole model Bar model Number lines (labelled)	Number lines (blank) Straws Hundred square

Skill	Year	Representations and models	
Add two 2-digit numbers	2	Part-whole model Bar model Number lines (blank) Straws	Base 10 Place value counters Column addition
Add with up to 3-digits	3	Part-whole model Bar model	Base 10 Place value counters Column addition
Add with up to 4-digits	4	Part-whole model Bar model	Base 10 Place value counters Column addition
Add with more than 4 digits	5	Part-whole model Bar model	Place value counters Column addition
Add with up to 3 decimal places	5	Part-whole model Bar model	Place value counters Column addition

Subtraction

Skill	Year	Representations and models	
Subtract two 1-digit numbers to 10	1	Part-whole model Bar model Number shapes	Ten frames (within 10) Bead strings (10) Number tracks
Subtract 1 and 2-digit numbers to 20	1	Part-whole model Bar model Number shapes Ten frames (within 20)	Bead string (20) Number tracks Number lines (labelled) Straws
Subtract 1 and 2-digit numbers to 100	2	Part-whole model Bar model Number lines (labelled)	Number lines (blank) Straws Hundred square
Subtract two 2-digit numbers	2	Part-whole model Bar model Number lines (blank) Straws	Base 10

$\left.\begin{array}{|c|c|cc|}\hline \text { Skill } & \text { Year } & \text { Representations and models } \\ \hline \begin{array}{c}\text { Subtract with up to 3- } \\ \text { digits }\end{array} & 3 & \begin{array}{c}\text { Part-whole model } \\ \text { Bar model }\end{array} & \begin{array}{c}\text { Base 10 } \\ \text { Place value counters } \\ \text { Column addition }\end{array} \\ \hline \begin{array}{c}\text { Subtract with up to 4- } \\ \text { digits }\end{array} & 4 & \begin{array}{c}\text { Part-whole model } \\ \text { Bar model }\end{array} & \begin{array}{c}\text { Base 10 } \\ \text { Place value counters } \\ \text { Column addition }\end{array} \\ \hline \begin{array}{c}\text { Subtract with more than } \\ 4 \text { digits }\end{array} & 5 & \begin{array}{c}\text { Part-whole model } \\ \text { Bar model }\end{array} & \begin{array}{c}\text { Place value counters } \\ \text { Column addition }\end{array} \\ \hline \begin{array}{c}\text { Subtract with up to 3 } \\ \text { decimal places }\end{array} & 5 & \begin{array}{c}\text { Part-whole model } \\ \text { Bar model }\end{array} & \text { Place value counters } \\ \text { Column addition }\end{array}\right]$

Skill: Subtract 1 and 2-digit numbers to 20	Year: 1/2
	When subtracting one-digit numbers that cross 10 , it is important to highlight the importance of ten ones equalling one ten. Children should be encouraged to find the number bond to 10 when partitioning the subtracted number. Ten frames, number shapes and number lines are particularly useful for this.

Year: 5/6

Place value counters or plain counters on a place value grid are the most effective concrete resource when subtracting numbers with more than 4 digits.

At this stage, children should be encouraged to work in the abstract, using column method to subtract larger numbers efficiently.

Addend - A number to be added to another.

Aggregation - combining two or more quantities or measures to find a total.

Augmentation - increasing a quantity or measure by another quantity.

Commutative - numbers can be added in any order.

Complement - in addition, a number and its complement make a total e.g. 300 is the complement to 700 to make 1,000 .

Difference - the numerical difference between two numbers is found by comparing the quantity in each group.

Exchange - change a number or expression for another of an equal value.

Minuend - a quantity or number from which another is subtracted.

Glossary

Partitioning - Splitting a number into its component parts.

Reduction - subtraction as take away.
Subitise - instantly recognise the number of objects in a small group without needing to count.

Subtrahend - a number to be subtracted from another.

Sum - the result of an addition.
Total - the aggregate or the sum found by addition.

Bar Madal

Numbar Shap

21

$5 \times 4=20$
$4 \times 5=20$

$?$	$?$	$?$	$?$	$?$	$?$	$?$

88388888

$$
18 \div 3=6
$$

Boys

3	3	3	3	3

Girls 3

Bead Strings

$-000-000-000-000-000-$

$$
5 \times 3=15 \quad 15 \div 3=5
$$

Numbar Tracl

$-00000-00000-00000-$

$$
\begin{aligned}
& 5 \times 3=15 \\
& 3 \times 5=15
\end{aligned} \quad 15 \div 5=3
$$

$-0000-0000-0000-0000-0000-$

$$
\begin{aligned}
& 6 \times 3=18 \\
& 3 \times 6=18
\end{aligned}
$$

$$
\begin{aligned}
& 4 \times 5=20 \\
& 5 \times 4=20
\end{aligned} \quad 20 \div 4=5
$$

$18 \div 3=6$

$$
\begin{aligned}
& 4 \times 5=20 \\
& 5 \times 4=20
\end{aligned}
$$

$20 \div 4=5$

A red car travels 3 miles.
A blue car 4 times further.
How far does the blue car travel?

A blue car travels 12 miles.
A red car 4 times less.
How far does the red car travel?

Dienas
 (subtraction)

Skill	Year	Representations and models	
Recall and use multiplication and division facts for the 2-times table	2	Bar model Number shapes Counters Money	Ten frames Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 5-times table	2	Bar model Number shapes Counters Money	Ten frames Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 10-times table	2	Hundred square Number shapes Counters Money	Ten frames Bead strings Number lines Base 10

Skill	Year	Representations and models	
Recall and use multiplication and division facts for the 3-times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 4-times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 8-times table	3	Hundred square Number shapes	Bead strings Everyday objects
Recall and use multiplication and division facts for the 6-times table	4	Hundred square Number shapes	Number tracks Everyday objects

Skill	Year	Representations and models	
Recall and use multiplication and division facts for the 7-times table	4	Hundred square Number shapes	Bead strings Number lines
Recall and use multiplication and division facts for the 9-times table	4	Hundred square Number shapes	Bead strings Number lines
Recall and use multiplication and division facts for the 11-times table	4	Hundred square Base 10	Place value counters
Recall and use multiplication and division facts for the 12-times table	4	Nundred square lines Base 10	Place value counters Number lines

Year: 2

Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square.

Look for patterns in the two times table, using concrete manipulatives to support. Notice how all the numbers are even and there is a pattern in the ones.

Use different models to develop fluency.

Year: 2
Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square.

Look for patterns in the five times table, using concrete manipulatives to support. Notice the pattern in the ones as well as highlighting the odd, even, odd, even pattern.

4	8	12	16	20
24	28	32	36	40
44	48	52	56	60

-0000-0000-0000-0000-0000-

Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the four times table, using manipulatives to support. Make links to the 2 times table, seeing how each multiple is double the twos. Notice the pattern in the ones within each group of five multiples.
Highlight that all the multiples are even using number shapes to support.

Skill: 8 times table

Year: 3

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

-00000000-00000000-00000000-

Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the eight times table, using manipulatives to support. Make links to the 4 times table, seeing how each multiple is double the fours. Notice the pattern in the ones within each group of five multiples.
Highlight that all the multiples are even using number shapes to support.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Year: 4

Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the six times table, using manipulatives to support. Make links to the 3 times table, seeing how each multiple is double the threes. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.

$-000000000-000000000-000000000-$

Year: 4
Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the nine times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support as well as noting the odd, even pattern within the multiples.

11	22	33	44	55	66
77	88	99	110	121	132

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	7	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square.

Look for patterns in the eleven times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support. Also consider the pattern after crossing 100

Skill	Year	Representations and models	
Multiply 2-digit by 2- digit numbers	5	Place value counters Base 10	Short written method Grid method
Multiply 2-digit by 3- digit numbers	5	Place value counters	Short written method Grid method
Multiply 2-digit by 4- digit numbers	$5 / 6$	Formal written method	

One bag holds 5 apples.
How many apples do 4 bags hold?

$$
\begin{gathered}
5+5+5+5=20 \\
4 \times 5=20 \\
5 \times 4=20
\end{gathered}
$$

Children represent multiplication as repeated addition in many different ways.

In Year 1, children use concrete and pictorial representations to solve problems. They are not expected to record multiplication formally.

In Year 2, children are introduced to the multiplication symbol.

Skill: Multiply 4-digit numbers by 2-digit numbers

Year: 5/6

TTh	Th	H	T	O
	2	7	3	9
\times			2	8
2	1	${ }^{1} 9$	1	2
5	4	7	8	0
1	6	6	9	2
7		6		

$2,739 \times 28=76,692$

When multiplying 4digits by 2-digits, children should be confident in the written method.

If they are still struggling with times tables, provide multiplication grids to support when they are focusing on the use of the method.

Consider where exchanged digits are placed and make sure this is consistent.

Division

Skill	Year	Representations and models	
Solve one-step problems with division (sharing)	$1 / 2$	Bar model Real life objects	Arrays Counters
Solve one-step problems with division (grouping)	$1 / 2$	Real life objects Number shapes Bead strings Ten frames	Number lines Arrays Counters
Divide 2-digits by 1- digit (no exchange sharing)	3	Straws Base 10 Bar model	Place value counters
Divide 2-digits by 1- digit (sharing with exchange)	3	Straws Base 10 Bar model	Place value counters

Skill	Year	Representations and models	
Divide 2-digits by 1- digit (sharing with remainders)	$3 / 4$	Straws Base 10 Bar model	Place value counters Part-whole model
Divide 2-digits by 1- digit (grouping)	$4 / 5$	Place value counters Counters	Place value grid Written short division
Divide 3-digits by 1- digit (sharing with exchange)	4	Base 10 Bar model	Place value counters Part-whole model
Divide 3-digits by 1- digit (grouping)	$4 / 5$	Place value counters Counters	Place value grid Written short division

Skill	Year	Representations and models	
Divide 4-digits by 1- digit (grouping)	5	Place value counters Counters	Place value grid Written short division
Divide multi-digits by 2-digits (short division)	6	Written short division	List of multiples
Divide multi-digits by 2-digits (long division)	6	Written long division	List of multiples

Skill: Solve 1-step problems using division (grouping) \quad| Year: $1 / 2$ |
| :--- |

Skill: Divide 2-digits by 1-digit (grouping)

Year: $4 / 5$
When using the short division method, children use grouping. Starting with the largest place value, they group by the divisor.

Language is important here.
Children should consider 'How many groups of 4 tens can we make?' and 'How many groups of 4 ones can we make?'

Remainders can also be seen as they are left ungrouped.

Array - an ordered collection of counters, cubes or other items in rows and columns.

Commutative - numbers can be multiplied in any order.

Dividend - in division, the number that is divided.

Divisor - in division, the number by which another is divided.

Exchange - change a number or expression for another of an equal value.

Factor - a number that multiples with another to make a product.

Multiplicand - in multiplication, a number to be multiplied by another.

W

Partitioning - splitting a number into its component parts.

Product - the result of multiplying one number by another.

Quotient - the result of a division.
Remainder - the amount left over after a division when the divisor is not a factor of the dividend.

Scaling - enlarging or reducing a number by a given amount, called the scale factor.

